US 2004/0187096 Al

[0074] The class declaration for the Monitor class may
thus be expressed as:

MONITOR CLASS - TABULATED VIEW
CLASS NAME: Monitor

ATTRIBUTES Type Comments

screen__resolution integer

refresh_ rate Value integer
warp__master__value: ..\..\pixel__clock
warp__rule:
If warp__master__value > ‘100’, max = ‘50;
If warp__master_ value > ‘200°, max = ‘60;
If warp__master__value > ‘300°, max = ‘70;

[0075]

MONITOR CLASS - PSEUDO-CODE

class Monitor;
attributes:

refresh_ rate:

{ .
type: integer;
warp__master__value: ..\..\pixel__clock;
define warp__master_ value
warp__rule: # define warp__rule

If warp__master_ value > ‘100°, max = ‘50;
If warp__master__value > ‘200°, max = ‘60;
If warp__master__value > ‘300°, max = ‘70;

}

screen__resolution: # define the characteristics of the
variable screen_ resolution

type : integer;

[0076] An overview of this value warp functionality is
shown in FIG. 5a. For example, when the accessor method
used to retrieve the value of the refresh rate attribute is called
(step 500), it is determined whether the attribute has any
associated warp information (step 502). If there is no warp
information, the value of the attribute is returned (step 510).
If there is warp information available the warp master value
is retrieved (504) as previously described using, for
example, the tree navigation functionality. Any warp rule
information is then obtained (step 506) and is applied to the
warp master value (step 508). The attribute value is then
returned (step 510).

[0077] To ensure that subsequent changes to the warp
master value will cause a change in the warp value a
registration mechanism may be used to register the reference
of the warp value, along with the warp rule, with the warp
master value. This may be achieved, for example, by declar-
ing the warp master value as of a class type having appro-
priate data repositories and methods for interpreting and
performing the required functionality. Thus, when a warp
master value is interrogated, the reference to the warp value,
along with any associated warp rules, are registered with the

Sep. 23, 2004

warp master value. This step may be added, for example,
between the steps 504 and 506 of the flow diagram of FIG.
Sa.

[0078] Thus, should the warp master value be subse-
quently modified, the accessor methods used for modifying
the warp master value will check to see whether any warp
values have been registered therewith, and if so will update
the registered warp value directly using the registered warp
rules, as outlined in the flow diagram of FIG. Sb. When the
accessor method of an attribute is accessed, a check is made
to determine whether there is any warp information regis-
tered with the attribute (step 520). If no such information is
registered, the attribute may be modified, for example, in the
usual manner (step 528). If warp information is registered,
the reference of the attribute which is registered thereat is
obtained (step 522), along with the warp rule (step 524)
which may also have been registered. In the event that more
than one warp rule has been registered the appropriate warp
rule can be selected. The warp rule is then applied and the
attribute which is registered is modified directly using the
registered reference (step 526). Finally, the attribute within
the class may be modified (step 528).

[0079] As previously mentioned, use of Class::Method-
Maker in Perl causes objects which use Class::Method-
Maker to be dynamically created as they are accessed. FIG.
6 is a flow diagram outlining one way in which the main
steps may be performed when using a Perl-type implemen-
tation for requesting a warp value from an object which has
yet to be created.

[0080] The request for the value of the refresh rate
attribute 112 is made through the monitor object 108, for
example, by calling the appropriate accessor function. If the
monitor object does not exist (step 604), then it is created
(step 606). At step 608 it is determined whether the
requested attribute is a warp value. If the requested attribute
is a warp value, then the reference of the warp master object
is retrieved (step 610) as previously described. The warp
value and warp rules are registered, or stored, within the
warp master object (step 612) as described above, and a
check is made to see whether the warp master value exists
and has been previously defined (step 614). If the warp
master value has been defined, the warp rule is applied to the
warp master value (steps 616 and 618) and the warp value
is returned (step 624).

[0081] A second type of dependency is where a class is
dependent on an attribute of another class (the warp master).
For example assume that the computer type attribute 103 of
the computer object 102 indicates whether the computer is
a laptop or a desktop computer. A desktop computer may
thus have a computer monitor, not an LCD screen, whereas
a laptop computer may have an LCD screen, not a computer
monitor. Thus, depending on the value of the computer type
attribute 103, either a monitor object or an LCD screen
object should be created to enable the correct configuration
behavior to be modeled.

[0082] In an embodiment of the present invention, this
functionality is implemented through use of a ‘hidden’
intermediate object hereinafter referred to as a warp object,
as shown in FIG. 4. In the present example, the warp object
105 lies intermediate the video card object 104 and a
monitor or LCD screen object, 108 and 116 respectively, and
effectively regulates access to the underlying objects, as will

